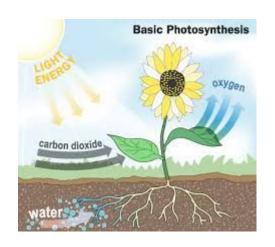
OKIDATIONS OKIDACTIONS

Oxidation and Reduction reactions happen all around you!


Examples:

Respiration


Photosynthesis

Rust

Combustion

Redox: A chemical reaction that is ALL ABOUT ELECTRONS Atoms or compounds - Gaining or Losing electrons

Redox reactions deal with Atoms & Compounds

Atom: Ag (silver)

Compound: AgNO₃ (silver nitrate)

Both have a net charge of 0!

Redox reactions deal with Atoms & Compounds

Ionic Compound: Each have a charge they bring to the table

AgNO₃ (silver nitrate)

$$Ag^{1+} + (NO_3)^{1-}$$

Atoms in compounds have charges

An atom's charge in an ionic compound is based around its valence electrons

Will it **lose them** or **gain** electrons to form a complete octet?

Metals tend to lose electrons, Non-metals tend to gain electrons

Alkaline Metals: 1+

Alkaline Earth Metals: 2+

Transition Metals: Varies

Group 13: Varies

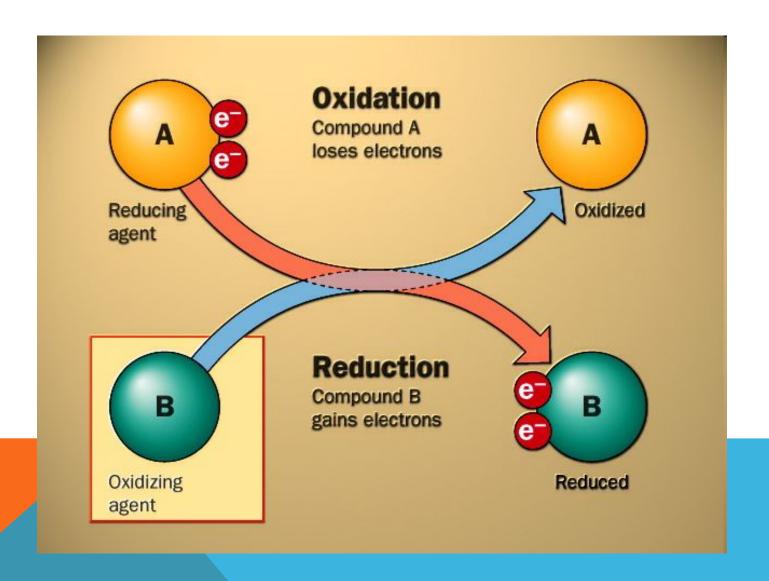
Group 14: Varies

Group 15: Varies

Group 16: 2-

Halogens: 1-

Fill in periodic table

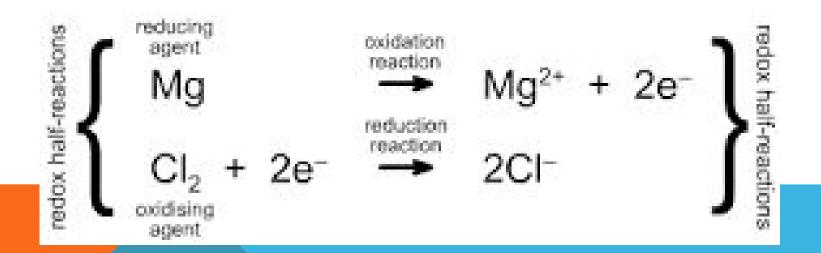

Redox reactions are a **transfer of electrons** between two elements

Atom or compound that donates (loses) an electron is *oxidized*

Atom or compound that accepts (gains) an electron is *reduced*

Oxidation is loss - Reduction is gain

IMPORTANT FACTS CONCERNING REDOX

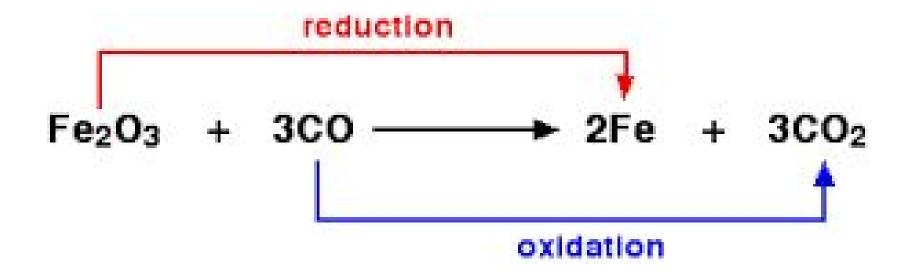

Oxidation and reduction occur together, you can't have one without the other

No net change in the number of e- in a redox reaction (rxn)

The atom or molecule that is reduced is the oxidizing agent

The atom or molecule that is oxidized is reducing agent

Full Reaction Equation
$$Mg + Cl_2 \rightarrow MgCl_2$$
 Ionic Reaction $Mg + Cl_2 \rightarrow Mg^{2+} + 2Cl^{-}$



Oxidation numbers have rules

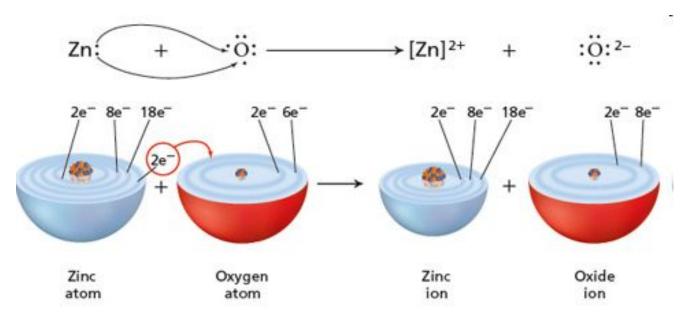
Oxidation numbers help chemists decide if electron transfers are occurring, and to determine if a reaction is a REDOX reaction

- 1. Neutral atoms o.n. = O (N, N_2 , S_8)
- 2. Ions o.n.'s are equal to their charge (Li¹⁺ = +1 Cl¹⁻= -1)
- 3. Fluorine's o.n. = -1
- 4. Oxygen's o.n. = -2 (except in peroxides)
- 5. Hydrogen o.n. w/ non-metals = +1
- 6. Hydrogen o.n. w/ metals = -1

IDENTIFY WHAT IS GOING ON IN A REDOX REACTION

OIL RIG

Oxidation Is Loss, Reduction Is Gain



A TABLE THAT MIGHT HELP

Oxidation	Reduction
Loses electrons	Gains electrons
Ends up with net positive charge/ oxidation number	Ends up with net negative charge/ oxidation number
Oxidation number increases	Oxidation number decreases ("reduces")
OIL	RIG
Oxidation is loss	Reduction is gain
Reducing Agent	Oxidizing Agent

BALANCING REDOX REACTIONS

- The key keep track of the e- electrons!!
- Zn loses 2 and O gains 2 they should be equal and balance out

RESOURCES

http://www.shodor.org/unchem/advanced/redox/

http://en.wikipedia.org/wiki/Oxidant

http://www.wisegeek.com/what-is-a-combustion-reaction.htm

http://www.iun.edu/~cpanhd/C101webnotes/chemical%20reactions/combination.html

http://artsedge.kennedy-center.org/content/3907/